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Abstract— Uncertainty considerations in microgrid operation 

and planning are of significant importance as uncertain factors 
can potentially alter the operator’s decisions. New mathematical 
approaches, such as robust optimization, are commonly adopted 
to capture uncertainties and ensure practicality. However, this 
added practicality is at the expense of increased problem size and 
computational complexity. This paper presents a detailed 
discussion and analysis of prevailing uncertainties in microgrid 
operation and planning, and accordingly proposes a new 
preprocessing approach to integrate uncertainties while reducing 
computational requirements. Numerical simulations exhibit the 
merits of the proposed approach over the commonly used robust 
optimization method from the execution time and practicality 
perspectives.  

Index Terms—Distributed energy resource, microgrid, 
preprocess, robust optimization, uncertainty.   

NOMENCLATURE 

c     Generation price for dispatchable units 
maxC   Rated capacity of energy storage systems 

ch  Superscript for energy storage charging mode 
dch    Superscript for energy storage discharging mode 
D    Set of dual variables  
D     Load demand  
g    Superscript for uncertain renewable generation 
G    Set of dispatchable units 
i     Index for DERs 
l    Superscript for the uncertain load 
LS    Load curtailment 
P     Set of primal variables 
P     DER output power  

MP    Main grid power  
maxP   Rated power of DERs 
max
MP  Flow limit between microgrid and the main grid 

S     Set of energy storage systems 
t     Index for hour 
u  Auxiliary binary variables for uncertain parameters  

Mu  Binary islanding variable  
U     Set of uncertain parameters 
v     Value of lost load (VOLL) 
W   Set of nondispatchable units 
x     Uncertain parameter 
     Index for calculated/given variables 
~     Index for forecasted parameters 

     Market price 
     Energy storage efficiency 
     Limit on uncertainty option 

 ,,,,,,   Dual variables 
 

I. INTRODUCTION 

ICROGRIDS, as promoters of pervasive distributed 
generation, improved grid reliability, and the greener 
energy economy, have been significantly deployed over 

the past few years and are anticipated to grow even more in 
the near future [1]. During the past decade, a significant 
amount of research has been devoted to study microgrids and 
to facilitate development and implementation efforts. The 
number of published articles focused on microgrids has been 
tripled over the past five years and microgrid deployments 
have been federally supported in the United States, 
particularly by establishing the U.S. DOE Microgrid Initiative 
[2]. Over the 2011 to 2014 period, there have been numerous 
microgrid projects in the United States funded by DOE, DOD, 
industry and governmental labs matching funds, as well as 
electric utilities, totaling more than $213 million. Similar trend 
can also be seen globally where the 2013 worldwide installed 
microgrids generation capacity exceeded 4.1 GW [3]. These 
figures clearly represent the growing interest in this new 
technology and picture future power grids as systems of 
interconnected microgrids. Microgrids are more than just 
backup generation, as they could efficiently manage a set of 
local generation and load resources and introduce unique 
operational opportunities for local customers, such as 
improved reliability, higher power quality, economic 
operation, and offering energy efficiency [4]-[12]. 

One important issue in managing microgrids is the role of 
uncertainties. Uncertainty represents factors, which having a 
major influence on scheduling decisions, are out of control of 
the microgrid controller and/or cannot be forecasted with 
certainty. Uncertainty considerations in power system 
operation and planning have been significantly increased in 
the past few years. Two common approaches for considering 
uncertainty are stochastic programming and robust 
optimization. Stochastic models are commonly based on 
sampling methods with pre-assumed probability distribution 
functions, which convert the original objective to the weighted 
average of objectives for individual scenarios. However, a 
concrete characterization of the uncertainty requires a large 
number of scenarios, especially when uncertainties are not 
discrete. Thus, the derived large-scale stochastic problem is 
more time-intensive and considerably harder to solve than the 
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original problem. In addition, probability distributions cannot 
be accurately estimated which would obstruct the practical 
implementation of this technique. On the other hand, in robust 
optimization, each uncertain parameter is associated with an 
uncertainty interval, i.e., an upper bound and a lower bound, 
where the optimization problem ensures the feasibility of the 
solution in the worst-case scenarios [13]. Thus, in contrast 
with stochastic programming, there is no need to accurately 
determine distribution probability functions related to 
uncertain data. Furthermore, the robust optimization problem 
does not suffer from the curse of dimensionality since only 
one robust problem is solved rather than a set of problems 
corresponding to individual scenarios. However, the robust 
optimization solution is obtained at the expense of sacrificing 
a certain level of the solution optimality and increased 
computational complexity.  

In this paper, a preprocess approach is proposed to identify 
uncertainties that result in the robust (i.e., worst-case) 
solution. In other words, the solution of the robust 
optimization will be achieved without the need to solve the 
robust problem. Using this preprocess approach, the primal 
microgrid operation problem, which is linear and convex, can 
be solved instead of the dual problem that is required in the 
robust optimization and contains a large number of binary 
variables, hence addressing the computational complexity 
problem. This paper performs studies on the microgrid optimal 
scheduling problem which also acts as a core component in 
longer term maintenance and planning problems.  

The rest of the paper is organized as follows. Section II 
discusses microgrid’s prevailing uncertainties and further 
develops the microgrid optimal scheduling model. Section III 
discusses the possibility of determining uncertainties as a 
preprocess. Section IV provides numerical simulations for a 
test microgrid to validate findings and evaluate the proposed 
approach. The discussions on the proposed approach and 
conclusions are provided in Sections V and VI, respectively. 

II. MICROGRID OPTIMAL SCHEDULING 

A. Discussion on Uncertainties 

Uncertainties involved in the microgrid optimal scheduling 
can be attributed into two groups of forecasting-related and 
islanding-related. Forecast errors represent uncertainties in 
accurately forecasting future values of microgrid load, 
variable renewable generation, and time-dependent market 
prices. The islanding-related uncertainty represents the 
uncertain time and duration of main grid outages in which the 
microgrid needs to operate in the islanded mode. An extensive 
discussion on uncertainties in microgrids can be found in [13]. 
This paper only focuses on the forecasting-related uncertainty.  

B. Microgrid Optimal Scheduling Under Uncertainties  

The day-ahead microgrid optimal scheduling problem is 
formulated as follows.  
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The objective of the optimal scheduling problem is to 

minimize the microgrid operation cost (1), including the 
generation cost of dispatchable units, the cost of energy 
purchase from the main grid, and the cost of unserved energy. 
The objective is maximized over uncertainty sets to achieve 
the worst-case microgrid optimal operation solution. The cost 
of unserved energy is defined as the load curtailment quantity 
multiplied by the value of lost load (VOLL), where higher 
VOLLs represent more critical loads [14]. The load balance 
equation (2) ensures that the sum of power generated by all 
DERs, including dispatchable and nondispatchable units as 
well as energy storage, and power from the main grid is equal 
to the hourly load. Additional operational constraints include 
the limit the amount of exchanged power with the main grid 
(3), dispatchable units’ generation capacity limits (4), 
nondispatchable units generation (5), the energy storage 
charging and discharging limits (6)-(7), the energy storage 
available energy (8), and the limit on load curtailments (9). A 
binary islanding parameter is added to (3) to model grid-
connected (ݑெ,௧=1) and islanded (ݑெ,௧=0) operation modes. 
Since line flows are relatively small, the distribution network 
congestion is neglected. The proposed microgrid optimal 
scheduling model is developed in a linear format where the 
binary variables associated with the commitment state of 
dispatchable units and charging/discharging states of energy 
storage are ignored.  

To solve the proposed microgrid optimal scheduling 
problem, in which its objective has a max-min format, the dual 
problem of the inner minimization problem is combined with 
the outer maximization problem. The resultant problem with 
dual variables and uncertain parameters is as follows: 
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where λ, μ, π, υ, ψdch, ψch, ξ, and θ are dual variables of 
constraints (2)-(9), respectively. Considering polyhedral 
uncertainty sets, and assuming that the worst-case solution 
occurs at extreme points, uncertain parameters can be 
represented as a function of the nominal forecasted value and 
the uncertainty interval with the aid of auxiliary binary 
variables. For example, the uncertain parameter x can be 
written as ݔ ൌ ෤௧ݔ െ ௧ݑ௧ݔ ൅  ௧ where inserted bars representݑ௧ݔ
its upper/lower bounds. To prevent simultaneous occurrence 
of extreme points, one binary variable can be set at one at any 
given hour, i.e., ݑ௧ ൅ ௧ݑ ൑ 1. Compared to the primal problem 
which was a linear problem, a large amount of binary 
variables will be added to the robust problem. The addition of 
binary variables would create a nonlinear and computationally 
more challenging optimization problem. Bilinear terms, as 
would appear in (10) when binary variables are used, should 
be further converted into linear terms which would 
accordingly add additional variables to the problem [15].  

C. Uncertainty Control 

The level of solution conservatism can be efficiently 
controlled by limiting the total number of uncertain 
parameters that can reach their extreme values, or in other 
words, the total number of binary auxiliary variables that can 
reach a value of 1. The limit on uncertainty options is given in 
(17). The larger the limit on uncertainty option, a more robust 
solution is obtained against uncertainties, resulting in a larger 
operation cost. On the other hand, the smaller the limit on 
uncertainty option, a more aggressive solution is obtained, 
resulting in a less robust solution. A moderate solution 
considers some level of uncertainty in between.  


t

tt uu )(     (17) 

The limit on uncertainty option is a necessary tool to control 
the solution conservatism and prevent large deviations from 
the optimal solution. This limit, however, adds additional 
computational complexity to the problem as only a selected set 
of binary variables can reach a value of 1. To address the 
computational complexity, a preprocessing approach, as 
discussed in the next section, is proposed.  

III. PROPOSED PREPROCESSING APPROACH  

The objective of the proposed preprocessing approach is to 
determine uncertainties without the need to solve the 
computationally challenging robust optimization problem 
developed in Section II. To perform preprocessing, first a set 
of efficient signals for each type of uncertainty should be 
developed as discussed in the following: 

Load signal: Considering the proposed uncertainty definition, 
the load uncertainty will be defined as ܦ ൌ ෩௧ܦ െ ௧ݑ௧ܦ

௟ ൅ ௧ݑ௧ܦ
௟  

and the corresponding term in the objective function (10) 
would be ∑ ሺߣ௧ ൅ ෩௧ܦ௧ሻሺߠ െ ௧ݑ௧ܦ

௟ ൅ ௧ݑ௧ܦ
௟ሻ௧ . It can be shown 

that ߣ௧, i.e., the dual variable associated with the load balance 
constraint (2), is always positive in the proposed robust 
problem, and also ߠ௧ is zero in grid-connected modes as there 
will be no load curtailments. Therefore, demand will 
maximize the objective (10) when it is larger than the 
forecasted value, or equivalently, when it is at its upper bound, 
i.e., ݑ௧

௟ ൌ 1 and ݑ௧
௟ ൌ 0. The uncertain load will be 

accordingly represented by ܦ෩௧ ൅  ௧. Considering that theܦ
upper and lower bounds of the uncertainty interval are linear 
functions of the nominal value, e.g., ܦ௧ ൌ 0.1 ൈ  ෩௧ for a 10%ܦ
forecast error, the load signal of ߣ௧ሺܦ෩௧ ൅  ௧ሻ will beܦ
considered for characterizing the load uncertainty. By 
calculating this signal and sorting values from the highest to 
the lowest, the order of hours of the day in which the worst-
case load has happened can be efficiently determined. 

Renewable generation signal: The renewable uncertainty 
will be defined as ௜ܲ௧ ൌ ෨ܲ௜௧ െ ௜ܲ௧ݑ௜௧

௚ ൅ ܲ௜௧ݑ௜௧
௚ . It can be shown 

that ߴ௜௧, i.e., the dual variable associated with the generation 
of renewable sources (5), is always negative in the proposed 
robust problem. Therefore, variable renewable sources will 
maximize the objective (10) when they generate less than the 
forecasted value, or equivalently, when reaching the lower 
bound, i.e., ݑ௜௧

௚ ൌ 1 and ݑ௜௧
௚ ൌ 0. The power generated by 

variable renewable sources will be accordingly represented by 
෨ܲ௜௧ െ ௜ܲ௧. A lower value for ߴ௜௧ሺ ෨ܲ௜௧ െ ௜ܲ௧ሻ will result in a 
larger impact on the objective value, hence this term will be 
considered as the signal to determine the worst-case scenario 
of uncertainties in renewable generation. By calculating this 
signal and sorting values from the lowest to the highest, the 
order of hours of the day in which the worst-case has 
happened would be determined.  

Market price signal: The worst-case scenario of uncertainties 
in market prices depends on the microgrid power exchange 
with the main grid, i.e., selling or buying. If the microgrid is 
selling power in a specific hour, i.e., negative exchange power 
with the main grid, the worst-case in that hour would occur at 
the lower bound in which the market price is less than the 
forecasted value. Similarly, if the microgrid is buying power 
in a specific hour, i.e., a positive exchange power with the 
main grid, the worst-case in that hour would occur at the upper 
bound in which the market price is more than the forecasted 
value. By changing market prices, generation prices of 
dispatchable units should be noted. If the market price in a 
specific hour is less than the generation price of a dispatchable 
unit, the microgrid would prefer to buy power from the main 
grid instead of dispatching that unit, therefore ெܲ,௧ would be 
positive. The worst-case in this situation would occur when 
the market price is increased. If the market price in that hour 
increases to the extent that it becomes higher than the 
generation price of the dispatchable unit, the microgrid would 
prefer to dispatch that unit and sell power to the main grid. On 
the other hand, if the market price in a specific hour is higher 
than the generation price of a dispatchable unit, the microgrid 
would prefer to dispatch that unit and sell power to the main 
grid, therefore ெܲ,௧ would be negative. The worst-case in this 
situation would occur when the market price is further 
decreased. As a result, the signal for measuring the uncertainty 
in market price would comprise two parts; one is the effect of 
the exchange power and change in the market price, and the 
other is the effect of changes in the market price on turning 
dispatchable units on or off. In summary and based on the 
discussions, ∆ߩ௧. ெܲ,௧ ൅ ∆ ௜ܲ௧. ሺܿ௜ െ ௧ߩ െ  ௧ሻ could beߩ∆
considered as a signal to determine the worst-case scenario of 
uncertainties in market prices. Again, by calculating the 
proposed signal and sorting values from the highest to the 
lowest, the order of hours of the day in which the worst-case 
has happened would be determined.  



 4

IV. NUMERICAL SIMULATIONS 

A microgrid is installed for a group of electricity customers 
with a peak load demand of 17 MW. The set of DERs used in 
this study includes four dispatchable units, one wind unit, one 
solar unit, and one energy storage [11]. The cost coefficients 
of dispatchable units 1-4 are considered to be $27.7/MWh, 
$39.1/MWh, $61.3/MWh, and $65.6/MWh, respectively. The 
load, renewable energy, and market price are forecasted based 
on historical data obtained from the Illinois Institute of 
Technology Campus Microgrid [16]. Data of storage, wind, 
and solar are gathered from [17] and [18]. The efficiency of 
the energy storage and the VOLL are considered to be 100% 
and $10,000/MWh, respectively. The upper and lower bounds 
for all sources of uncertainty are considered to be 10% of the 
forecasted data. The microgrid optimal scheduling problem is 
implemented on a high performance computing server 
consisting of four 10-core Intel Xeon E7-4870 2.4 GHz 
processors with 128 GB memory. The problem was 
formulated by mixed-integer programming (for the robust 
optimization problem) and linear programming (for the primal 
problem in the proposed approach) and solved by CPLEX 
12.6 [19]. Two cases are studied to validate the accuracy of 
the proposed approach as well as its impact on reducing the 
computational complexity.  

Case 1 (Validation): The proposed preprocess approach in 
uncertainty consideration is applied to the test microgrid to 
ensure its viability in identifying uncertainties for loads, 
renewable generation, and market prices. By increasing the 
budget of uncertainty option in the load from 0 to 24 and 
solving the dual problem, the order of hours that cause the 
worst-cases would be 17, 18, 19, 20, 16, 21, 14, 15, 22, 13, 12, 
23, 24, 11, 10, 8, 9, 6, 7, 5, 4, 1, 3, and 2. The calculations of 
the proposed signal for load uncertainties, i.e., ߣ௧ሺܦ෩௧ ൅  ,௧ሻܦ
are shown in Fig. 1. By sorting the calculated values in all 
hours, it can be seen that the results would be the same as 
those obtained by solving the dual problem, meaning that the 
term ߣ௧ሺܦ෩௧ ൅  ௧ሻ would be a proper signal to assess the loadܦ
uncertainty. Similarly, for the renewable generation, by 
increasing the budget of uncertainty option in renewable 
generation units from 0 to 24 and solving the dual problem, 
the order of hours that cause the worst-case realization with 
respect to the wind generation would be 21, 22, 13, 12, 14, 11, 
6, 8, 9, 5, 7, 10, 17, and 18. Similarly, the order of hours that 
cause the worst-case realization with respect to the solar 
generation would be 17, 16, 18, 20, 15, 14, 19, 13, and 12. The 
wind and solar generation in other hours is zero. The 
calculations of the proposed signal for wind and solar 
uncertainties, i.e., ߴ௜௧ሺ ෨ܲ௜௧ െ ௜ܲ௧ሻ, are shown in Fig. 2. By 
sorting the calculated values in all hours, it can be seen that 
the results would be the same as those obtained by solving the 
dual problem, meaning that the term ߴ௜௧ሺ ෨ܲ௜௧ െ ௜ܲ௧ሻ would be a 
proper signal to assess the renewable generation uncertainty. 

 
Fig. 1. Impact of the proposed signal for load uncertainties 

 

Fig. 2. Impact of the proposed signal for renewable uncertainties 

For the market price uncertainty, first it is assumed that there 
is not any storage unit. By increasing the budget of uncertainty 
option in market prices from 0 to 24 and solving the dual 
problem, the order of hours that cause the worst-case 
realization would be 12, 22, 21, 8, 9, 10, 6, 7, 16, 4, 5, 11, 1, 
20, 17, 3, 19, 2, 18, 24, and 13. The calculated signal for 
market price uncertainties, i.e., ∆ߩ௧. ெܲ,௧ ൅ ∆ ௜ܲ௧. ሺܿ௜ െ ௧ߩ െ
 ௧ሻ, is shown in Fig. 3. It should be noted that 10% change inߩ∆
the market price would cause dispatchable unit 1 in hour 10, 
unit 2 in hour 11, unit 4 in hour 15, and unit 3 in hour 23 to be 
turned on. It also causes dispatchable unit 4 in hours 12 and 22 
and also units 3 and 4 in hours 13 and 14 to be turned off. 
Therefore, as discussed in Section III, the second term of the 
proposed signal, i.e., ∆ ௜ܲ௧. ሺܿ௜ െ ௧ߩ െ  ௧ሻ, should beߩ∆
considered for calculations at the aforementioned hours. By 
sorting the calculated values in all hours, it can be seen that 
the results would be the same as those obtained by solving the 
dual problem, meaning that ∆ߩ௧. ெܲ,௧ ൅ ∆ ௜ܲ௧. ሺܿ௜ െ ௧ߩ െ  ௧ሻߩ∆
is a proper signal to assess the market price uncertainty. By 
considering energy storage in the assessment of market price 
uncertainties, the results calculated by the signal are slightly 
different from those obtained by solving the dual problem. 
However, the differences are marginal and can be ignored 
with acceptable accuracy.  
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Fig. 3. Impact of the proposed signal for market price uncertainties 

TABLE I COMPARISON BETWEEN THE ROBUST OPTIMIZATION PROBLEM AND 
THE PROPOSED PREPROCESSING APPROACH  

 
Robust optimization with 

dual variables 
Proposed uncertainty 

preprocessing 
No. of continuous variables 201,480 87,600 

No. of binary variables 70,080 0 
No. of constraints 411,725 122,640 

Computation time 2.5-4 hours ~20 seconds 

Case 2 (Evaluation): The optimal scheduling problem is 
formulated using MIP and extended to obtain a one-year 
planning problem based on the data in [13]. There are eight 
sets of binary variables in the robust problem associated with 
upper and lower bounds of uncertainty intervals: two sets for 
the load, two sets for each of the two renewable generation 
units, and two sets for market prices. Each variable should be 
defined at every single hour during the scheduling period, 
therefore there would be 70,080 (= 8×8760) binary variables 
which should be determined in order to find the worst-case 
realization. Such a large number of binary variables would 
considerably increase the computational complexity. The 
number of binary variables will also be further larger when: 1) 
a longer planning time horizon, e.g., 20 years, is considered, 
and 2) a shorter operation time period, e.g., 10-min operation 
to capture renewable generation variability instead of the 
hourly scheduling, is considered. In either case, the obtained 
robust problem will be significantly larger and noticeably 
more difficult to solve considering the large number of added 
binary variables.  

The comparison between the two methods for a one-year 
planning problem is shown in Table I. The proposed method 
in this paper, which introduces signals to determine 
uncertainties, does not employ binary variables and formulates 
the problem using linear programming. The results show that 
reducing the number of variables and constraints would 
significantly decrease the computation time from 2.5-4 hours 
to less than a minute.  

V. CONCLUSIONS 

This study presented a detailed discussion and analysis of 
uncertainties in the microgrid optimal scheduling problem. 
The least-cost operation objective was maximized over 
uncertainty sets, using robust optimization, to achieve the 
worst-case optimal solution in the microgrid day-ahead 
operation and accordingly capture forecast uncertainties. To 
address the computational complexity associated with the 
robust optimization model, a preprocess approach was 
proposed which was capable of identifying uncertainties 
without the need to formulate and solve the robust problem. 

Instead, the preprocessing approach relied on solving the 
original linear problem and accordingly creating a set of 
uncertainty signals to identify the worst-case realizations of 
uncertain parameters. Based on the proposed preprocess 
approach, it was shown that the worst-case realization for load 
would occurred at its upper bound, and for renewable 
generation at its lower bound. The worst-case realization for 
the market prices were contingent on whether the microgrid 
was selling power to or buying power from the utility grid. 
Numerical examples demonstrated that the proposed signals 
can accurately determine worst-case realization in load, 
renewable generation, and market prices, and the proposed 
approach was capable of significantly reducing the complexity 
and the computation time of microgrid operation and planning 
problems under uncertainty.  
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